Nitrile Hydratase Genes Are Present in Multiple Eukaryotic Supergroups

نویسندگان

  • Alan O. Marron
  • Michael Akam
  • Giselle Walker
چکیده

BACKGROUND Nitrile hydratases are enzymes involved in the conversion of nitrile-containing compounds into ammonia and organic acids. Although they are widespread in prokaryotes, nitrile hydratases have only been reported in two eukaryotes: the choanoflagellate Monosiga brevicollis and the stramenopile Aureococcus anophagefferens. The nitrile hydratase gene in M. brevicollis was believed to have arisen by lateral gene transfer from a prokaryote, and is a fusion of beta and alpha nitrile hydratase subunits. Only the alpha subunit has been reported in A. anophagefferens. METHODOLOGY/PRINCIPAL FINDINGS Here we report the detection of nitrile hydratase genes in five eukaryotic supergroups: opisthokonts, amoebozoa, archaeplastids, CCTH and SAR. Beta-alpha subunit fusion genes are found in the choanoflagellates, ichthyosporeans, apusozoans, haptophytes, rhizarians and stramenopiles, and potentially also in the amoebozoans. An individual alpha subunit is found in a dinoflagellate and an individual beta subunit is found in a haptophyte. Phylogenetic analyses recover a clade of eukaryotic-type nitrile hydratases in the Opisthokonta, Amoebozoa, SAR and CCTH; this is supported by analyses of introns and gene architecture. Two nitrile hydratase sequences from an animal and a plant resolve in the prokaryotic nitrile hydratase clade. CONCLUSIONS/SIGNIFICANCE The evidence presented here demonstrates that nitrile hydratase genes are present in multiple eukaryotic supergroups, suggesting that a subunit fusion gene was present in the last common ancestor of all eukaryotes. The absence of nitrile hydratase from several sequenced species indicates that subunits were lost in multiple eukaryotic taxa. The presence of nitrile hydratases in many other eukaryotic groups is unresolved due to insufficient data and taxon sampling. The retention and expression of the gene in distantly related eukaryotic species suggests that it plays an important metabolic role. The novel family of eukaryotic nitrile hydratases presented in this paper represents a promising candidate for research into their molecular biology and possible biotechnological applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of an active site-bound nitrile hydratase intermediate through single turnover stopped-flow spectroscopy.

Stopped-flow kinetic data were obtained for the iron-type nitrile hydratase from Rhodococcus equi TG328-2 (ReNHase) using methacrylonitrile as the substrate. Multiple turnover experiments suggest a three-step kinetic model that allows for the reversible binding of substrate, the presence of an intermediate, and the formation of product. Microscopic rate constants determined from these data are ...

متن کامل

Simultaneous purification of nitrile hydratase and amidase of Alcaligenes sp. MTCC 10674

Alcaligenes sp. MTCC 10674 has a bienzymatic system for the hydrolysis of nitriles. The nitrile hydratase and amidase have been purified simultaneously to homogeneity using a combination of (NH)4SO4 precipitation, ion exchange chromatography and gel permeation chromatography. Nitrile hydratase and amidase have molecular weight of 47 and 114 kDa, respectively and exist as heterodimer. Optimum te...

متن کامل

A Protein-derived Oxygen Is the Source of the Amide Oxygen of Nitrile Hydratases.

Nitrile hydratase metalloenzymes are unique and important biocatalysts that are used industrially to produce high value amides from their corresponding nitriles. After more than three decades since their discovery, the mechanism of this class of enzymes is becoming clear with evidence from multiple recent studies that the cysteine-derived sulfenato ligand of the active site metal serves as the ...

متن کامل

Quantum Chemical Calculations and Experimental Validation of the Photoclick Reaction for Fluorescent Labeling of the 5’ cap of Eukaryotic mRNAs

Bioorthogonal click reactions are powerful tools to specifically label biomolecules in living cells. Considerable progress has been made in site-specific labeling of proteins and glycans in complex biological systems, but equivalent methods for mRNAs are rare. We present a chemo-enzymatic approach to label the 5' cap of eukaryotic mRNAs using a bioorthogonal photoclick reaction. Herein, the N7-...

متن کامل

Analysis of Rare Genomic Changes Does Not Support the Unikont–Bikont Phylogeny and Suggests Cyanobacterial Symbiosis as the Point of Primary Radiation of Eukaryotes

The deep phylogeny of eukaryotes is an important but extremely difficult problem of evolutionary biology. Five eukaryotic supergroups are relatively well established but the relationship between these supergroups remains elusive, and their divergence seems to best fit a "Big Bang" model. Attempts were made to root the tree of eukaryotes by using potential derived shared characters such as uniqu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012